Assessment of the Full Compatibility of Copper(I)-Catalyzed Alkyne-Azide Cycloaddition and Oxime Click Reactions for bis-Labelling of Oligonucleotides
نویسندگان
چکیده
The conjugation of oligonucleotides with reporters is of great interest for improving their intrinsic properties or endowing new ones. In this context, we report herein a new procedure for the bis-labelling of oligonucleotides through oxime ligation (Click-O) and copper(I)-catalyzed alkyne-azide cycloaddition (Click-H). 5'-Azido and 3'-aldehyde precursors were incorporated into oligonucleotides, and subsequent coupling reactions through Click-O and Click-H (or vice versa) were successfully achieved. In particular, we exhaustively investigated the full compatibility of each required step for both tethering strategies. The results demonstrate that click Huisgen and click oxime reactions are fully compatible. However, whilst both approaches can deliver the targeted doubly conjugated oligonucleotide, the route involving click oxime ligation prior to click Huisgen is significantly more successful. Thus the reactions investigated here can be considered to be key elements of the chemical toolbox for the synthesis of highly sophisticated bioconjugates.
منابع مشابه
Methyltransferase-directed covalent coupling of fluorophores to DNA† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04229e Click here for additional data file.
We report an assay for determining the number of fluorophores conjugated to single plasmid DNA molecules and apply this to compare the efficiency of fluorophore coupling strategies for covalent DNA labelling. We compare a copper-catalyzed azide-alkyne cycloaddition reaction, amine to N-hydroxysuccinimidyl ester coupling reaction and strain-promoted azide-alkyne cycloaddition reaction for fluore...
متن کاملNucleotidyl transferase assisted DNA labeling with different click chemistries.
Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using e...
متن کاملSynthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry
The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using cop...
متن کاملIsolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne “click reaction”
The copper-catalyzed 1,3-dipolar cycloaddition of an azide to a terminal alkyne (CuAAC) is one of the most popular chemical transformations, with applications ranging from material to life sciences. However, despite many mechanistic studies, direct observation of key components of the catalytic cycle is still missing. Initially, mononuclear species were thought to be the active catalysts, but l...
متن کاملSynthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azide-Alkyne Click Chemistry
The synthesis of isomeric, functionalized 4-vinyl-1,2,3-triazole and 5-vinyl-1,2,3-triazole monomers is demonstrated using heterogeneous copper (copper-in-charcoal)-catalyzed azide-alkyne cycloaddition (CuAAC) or homogeneous ruthenium (Ru)-catalyzed azide-alkyne cycloadditions (RuAAC) “click” protocols. These reactions are regiospecific, exclusively forming 1,4and 1,5-disubstituted triazoles as...
متن کامل